Testicular Tumors: What’s New, True, Important

Cristina Magi-Galluzzi, MD, PhD

Director, Genitourinary Pathology
R.J. Tomsich Pathology & Laboratory Medicine Institute
Professor of Pathology, Lerner College of Medicine
Cleveland Clinic
Testicular Cancer

- Uncommon (~1% cancer in male)
- 90-95% germ cell origin
- Most common cancer in white males age 20-35
- Incidence has ↑ in the last half century and is variable in different regions

Risk factors for Germ Cell Tumors (GCTs)

- Cryptorchidism
- Prior testicular GCT
- Family history of GCT (brother > sons > fathers)
- Disorders of sex development (gonadal dysgenesis)
- (Infertility, Marijuana use)
WHO 2016: Tumors of the Testis

- Updated pathogenetic model for GCTs
- Restructuring of classification
- New entities
 - Germ cell tumors
 - Sex cord stromal tumors
Preinvasive lesion to malignant testicular germ cell tumors (GCTs): evolution of nomenclature

CIS
- Skakkebaek, Lancet 1972
- CIS had characteristics of primordial germ cells

IGCNU
- Scully, Rosai, Mostofi, Kurman, et al, 1980
- WHO classification 2004

2016 WHO classification

Germ Cell Neoplasia In Situ
Germ Cell Neoplasia In situ (GCNIS)

- Malignant germ cells in "spermatogonial niche"
- Increased incidence in sex development disorders, up to 70%
 - Cryptorchidism
 - Gonadal dysgenesis
 - Androgen insensitivity syndrome
- 1-4% in subfertile/infertile men
- Seen in most seminomas and non-seminomas; 2-6% of testes contralateral to unilateral GCT
 - GCNIS supports a diagnosis of GCT
- 50% of men with GCNIS develop invasive GCT within 5 years
Germ Cell Neoplasia In situ (GCNIS)

- Gonocyte-like germ cells
- Single layer in basilar location
- Decreased or absent spermatogenesis
Germ Cell Neoplasia In situ (GCNIS)
Differential Diagnosis of GCNIS

- Delayed maturation of gonocytes in prepubertal patients with sex development disorder (beyond 6 mo)
 - OCT3/4+, PLAP+; central tubular location

- Atypical germ cells due to perturbation of spermatogenesis (cryptorchidism, infertility)
 - Binucleation, OCT3/4-

- Specific forms of intratubular neoplasia
 - Intratubular seminoma
 - Intratubular non-seminoma (embryonal carcinoma, YST, teratoma)
Intratubular Seminoma

- Expanded tubules, no residual Sertoli cells
- Tubules often contain lymphocytes
- IHC identical to seminoma
Intratubular Embryonal Carcinoma

OCT3/4
Pathogenetic Model for Germ Cell Tumors

GERM CELL NEOPLASIA IN SITU (GCNIS)

- Polyploidization
- Loss: 1p, 11, 13, 18, Y
- Gain: 7, 8, 12p, 21, X,
- KIT mutations
- (no or partial erasure)

- Reprogramming

NONSEMINOMA
EMBRYONAL CARCINOMA
TERATOMA
YOLK SAC TUMOUR
CHORIOCARCINOMA

SEMINOMA

NORMAL DEVELOPMENT

- Birth
- Puberty

embryonic stem cell
primordial germ cell
gonocyte
(pre) spermatogonia
(prim.) spermatocyte

specification
migration
sex determination
maturation
spermatogenesis

TERATOMA
(no or partial erasure)

- Loss: 1p, 4, 6q

YOLK SAC TUMOUR

- Gain: 9 (paternal imprinting)
- Mutations: HRAS, FGFR3
- SPERMATOCYTIC TUMOUR

GCNIS RELATED

GCNIS UNRELATED
2016 WHO Germ Cell Tumor Classification

- Yolk sac tumor prepubertal
- Spermatocytic tumor
- Seminoma
- Spermatocytic tumor with sarcoma
- Teratoma prepubertal
- Dermoid cyst, epidermoid cyst, carcinoid tumor

GCNIS-derived

- Yolk sac tumor
- Teratoma postpubertal
- Embryonal carcinoma
- Seminoma
- Choriocarcinoma
- Other trophoblastic tumors

Somatic malignancy

Not GCNIS-derived

- Teratoma
- Spermatocytic tumor with sarcoma

Sarcomatoid YST/sarcoma NOS

i(12p)
Seminoma

- Most common type of testicular GCT (up to 50%)
- Average age = 40.5 years (decade later than others GCT)
- Usually presents with testicular mass
- Pain or dull aching sensation
- A few present with metastatic disease
 - 75% limited to testis
 - 20% retroperitoneal involvement
 - 5% distant metastases
 - may have mild elevated βHCG, AFP normal
Seminoma

- Homogeneous light-tan nodular fleshy mass
- Hemorrhage & necrosis
Seminoma
Seminoma with marked inflammatory infiltrate
Seminoma with granulomatous inflammation
Seminoma: intertubular pattern of spread
Seminoma: intertubular pattern of spread
Intratubular Seminoma
‘Burnt-out’ germ cell tumor

Fibrotic scar with calcification

Lymphoplasmacytic infiltrate
Spontaneous regression of gonadal GCT [so-called – ‘burnt-out’ germ cell tumor]

- No identifiable invasive neoplasm
- Dense, hyaline scarring, sometimes with GCNIS in adjacent tubules
- Intratubular calcifications
- Lymphoplasmacytic infiltrate
- Hemosiderin-containing macrophages
- Testicular atrophy
Seminoma: differential diagnosis

<table>
<thead>
<tr>
<th></th>
<th>PLAP</th>
<th>OCT3/4</th>
<th>AE1/3</th>
<th>CD30</th>
<th>CD117</th>
<th>SALL4</th>
<th>CD45</th>
<th>AFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminoma</td>
<td>+</td>
<td>+</td>
<td>focal</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Embryonal carcinoma (solid pattern)**
 - Indistinct cell border and overlapping nuclei
 - Glandular structure only seen in EC
 - AE1/3 and CD30 +
 - OCT3/4 +

- **Yolk sac tumor (solid pattern)**
 - No fibrous septae
 - Solid YST is usually associated with other types
 - Edema in seminoma may resemble reticular YST
 - AE1/3+, Glypican 3, AFP +/-; OCT3/4 –, CD117 –
Seminoma: differential diagnosis

- **Sertoli cell tumor**
 - Tubular pattern may be confused with Sertoli cell tumor
 - Lipid (not glycogen) is responsible for clear cytoplasm
 - PLAP –, OCT3/4 –, inhibin +

- **Lymphoma**
 - No fibrous septae
 - Older patients
 - CD45 +
 - Bilateral involvement more likely

- **Choriocarcinoma (CC)**
 - No biphasic pattern is seen in seminoma
 - HCG is markedly elevated in CC; modestly in seminoma
 - AE1/3+, EMA +; OCT3/4 –
Seminoma: tubular pattern
Seminoma: tubular pattern
Seminoma: tubular pattern
Embryonal Carcinoma

- Pure is rare (10%)
- Seen in 40% of TGCTs
- Mean age = 32
- Only 40% have disease limited to testis at presentation
- 2/3 have metastatic disease upon staging
- Hemorrhage/necrosis common
- Not as well circumscribed as seminoma
Embryonal Carcinoma
Embryonal Carcinoma: growth pattern

Glandular/tubular Papillary

Solid
Embryonal Carcinoma
EC: differential diagnosis

<table>
<thead>
<tr>
<th></th>
<th>PLAP</th>
<th>OCT3/4</th>
<th>AE1/3</th>
<th>CD30</th>
<th>CD117</th>
<th>SALL4</th>
<th>EMA</th>
<th>CEA</th>
<th>AFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>focal</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
<td>focal</td>
</tr>
</tbody>
</table>

- **Seminoma**
 - Previously discussed

- **Yolk sac tumor**
 - Cells are smaller and less pleomorphic
 - Hyaline globules are present
 - AFP is diffusely +
 - CD30 and OCT3/4 –

- **Choriocarcinoma**
 - Syncytiotrophoblast cells are mixed with cytotrophoblast cell (biphasic pattern)
Yolk sac tumor (YST)

- Most common testicular neoplasm in children: 80% of pure YSTs occur in the first 2 years of life
- Pure YST is uncommon in adults (1.5% of GCTs); however YST is a component of ~40% of mixed GCT
- In adults present as a painless mass
- Serum alpha fetoprotein (AFP) levels are elevated in 90% of cases
- Patterns resemble portions of rat placenta
YST: gross appearance

- Typically solid and soft, white-gray, light yellow with cystic degeneration
- Large tumors may show necrosis and hemorrhage
Yolk sac tumor (YST)

Histologic patterns

- Microcystic (reticular)
- Macrocystic
- Myxoid
- Endodermal sinus (festoon)
- Solid
- Polyvesicular vitelline
- Hepatoid
- Spindle cells (in post-chemotherapy tumors)
- Parietal (AFP -)
- Glandular (clear cells)
YST: microcystic variant
YST: microcystic and solid variant
YST: histologic patterns

Microcystic

Solid and microcystic
YST: histologic patterns

Myxoid-spindle

Endodermal sinus (festoon)
YST: solid variant
YST: differential diagnosis

<table>
<thead>
<tr>
<th></th>
<th>PLAP</th>
<th>OCT3/4</th>
<th>AE1/3</th>
<th>CD30</th>
<th>Glypican-3</th>
<th>SALL4</th>
<th>EMA</th>
<th>CEA</th>
<th>AFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>YST</td>
<td>+/-</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- **Seminoma (vs. solid YST)**
 - No hyaline globules seen
 - Glypican 3 –, AFP –, OCT3/4 +

- **Embryonal carcinoma**
 - Marked nuclear crowding not seen in YST
 - CK +, focally AFP + (similar to YST)
 - CD30 and OCT3/4 +

- **Teratoma (vs. glandular YST)**
 - AFP –
Spermatocytic Seminoma Tumor

- Derived from postpubertal-type germ cells
- No relationship with seminoma
- 50-60 years old patients
- More frequently bilateral than other CGTs (9%)
- Never described in any site other than testis
- No association with cryptorchidism; no racial predisposition
- Amplification of chr. 9 (*DMRT1*) is most consistent genetic abnormality
Intratubular Spermatocytic Tumor
Spermatocytic Tumor: Intratubular Growth
Spermatocytic Tumor

- It metastasizes only exceedingly rarely (2 cases)
- Treatment: orchiectomy without adjuvant treatment
- Sarcomatous transformation is a rare complication: ~50% of patients develop metastatic disease and die of it
- Differential diagnosis:
 - Classic seminoma
 - Embryonal carcinoma
 - Lymphoma

<table>
<thead>
<tr>
<th></th>
<th>PLAP</th>
<th>OCT3/4</th>
<th>AE1/3</th>
<th>CD30</th>
<th>CD117</th>
<th>SALL4</th>
<th>CD45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spermatocytic Tumor</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>+</td>
<td>+</td>
<td>─</td>
</tr>
</tbody>
</table>
Teratoma: Post-Pubertal Type

- Most are mixed with other GCT elements; 4% are pure
- Capable of metastasis despite lack of malignant appearance
- May displays differentiation toward mature or immature somatic tissue
- Even patients with pure teratoma may develop metastases containing other GCT types
Teratoma

Mature

Immature

Immature elements do NOT affect overall prognosis
Teratoma: immature elements
Teratoma: Malignant Transformation

- Carcinomatous transformation requires an overtly invasive growth pattern.
- Somatic-type malignancy requires overgrowth of malignant-appearing mesenchymal or embryonic tissues to exclude other elements (at least a 4X low power field).
- Overgrowth of primitive neuroectodermal tissue should be recognized as primitive neuroectodermal tumor (PNET):
 - Limited to testis: most men are cured of the disease.
 - In metastases: surgical resection is mainstay of therapy; outcome is generally poor.
Teratoma: overgrowth of PNET
Teratoma: Prepubertal Type

- GCT usually seen in pre-pubertal testis
- Composed of elements resembling somatic tissues derived from one of more germinal layers
- NOT associated with:
 - GCNIS or atypia
 - Dysgenetic changes
 - Scarring
 - Chr. 12p amplification
- Conservative treatment
Changes in Trophoblastic Tumor

WHO 2004

Trophoblastic Tumors
- Choriocarcinoma
- Trophoblastic neoplasms other than choriocarcinoma
 - Monophasic choriocarcinoma
 - Placental site trophoblastic tumor

WHO 2016

Trophoblastic Tumors
- Choriocarcinoma
 - Monophasic choriocarcinoma
- Non-choriocarcinomatous trophoblastic tumors
 - Placental site trophoblastic tumor (PSTT)
 - Epithelioid trophoblastic tumor (ETT)
 - Cystic trophoblastic tumor
Choriocarcinoma

- Pure is quite rare (<1%); uncommon in mixed GCT (15%)
- Young patients (mean age 25-30 years)
- Symptoms related to metastatic disease (lungs, brain, GI tract)
- Serum HCG is typically elevated (> 55,000 IU/L)
- Prognosis is worse than for other GCT
Choriocarcinoma

- Cytotrophoblasts, intermediate trophoblasts
- Syncytiotrophoblast
Choriocarcinoma: Differential Diagnosis

- Other GCT may contain trophoblast cells, but they are scattered individual cells and lack biphasic pattern.
- EC may show degenerate cells with a poorly defined syncytiotrophoblastic component: lack of hemorrhage, hCG+ and OCT3/4+ distinguish EC from chorio.
- Monophasic chorio should be distinguished from seminoma and solid pattern YST:
 - diffuse hCG +, AFP -, OCT3/4 –
 - greater pleomorphism than in seminoma.

<table>
<thead>
<tr>
<th></th>
<th>PLAP</th>
<th>OCT3/4</th>
<th>CK</th>
<th>CD30</th>
<th>Inhibin</th>
<th>GATA3</th>
<th>EMA</th>
<th>hCG</th>
<th>AFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chorio</td>
<td>+/-</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Non-choriocarcinomatous trophoblastic tumors:
Cystic Trophoblastic Tumors

- May evolve from choriocarcinoma with regression of highly proliferative elements
- Occur mostly in metastatic sites after chemotherapy
- Rare *de novo* tumors in testis
- Normal/slightly elevated hCG
- Clinical significance similar to residual teratoma
- Treat as post-chemo teratoma (surgical resection; no additional chemo)
Cystic Trophoblastic Tumors

- Non-infiltrative
- Lack biphasic growth
- Low mitotic rate
Changes in Sex Cord-Stromal Tumor

- Sclerosing Sertoli cell tumor
 - Variant of Sertoli cell tumor NOS
 - Similar \(CTNNB1 \) gene mutation and nuclear \(\beta \)-catenin

- Intratubular large cell hyalinizing Sertoli cell tumor
 - Distinct entity associated with Peutz-Jeghers syndrome
 - \(STK11 \) gene mutation
Changes in Mixed Germ Cell Sex Cord-Stromal Tumors

- Gonadoblastoma (only entity)
 - Germ cells, similar to GCNIS
 - Sex cord cells resembling immature granulosa cells
- Rare, but seen in 50% of sex development disorders
- 70% diagnosed in neonatal period due to ambiguous genitalia
- May occur in dysgenetic testis: 40% bilateral
- If untreated, progresses to invasive GCT
8th AJCC/TNM Staging of Testicular Tumors

- In **seminoma**, T1 is subclassified to T1a and T1b according to size, using a 3 cm cutoff
- Size is independent predictor of disease recurrence
8th AJCC/TNM Staging of Testicular Tumors

• Hilar soft tissue invasion is T2
8th AJCC/TNM Staging of Testicular Tumors

- Epididymal invasion is T2 rather than T1
8th AJCC/TNM Staging: Spermatic Cord Invasion

- Vascular invasion in spermatic cord without stromal invasion: T2
- Cord involvement continuous with primary tumor: T3
- Cord involvement discontinuous with primary tumor: M1
Take Home Message

- Updated pathogenetic model for GCTs
- Restructuring of classification
 - GCNIS related
 - GCNIS unrelated
- New entities
- Changes in testicular tumor staging
Thank you!

magic@ccf.org